1,665 research outputs found

    CO2 lidar system for atmospheric studies

    Get PDF
    A lidar facility using a TEA CO2 laser source is being developed at the ENEA Laboratories for Atmospheric Studies. The different subsystems and the proposed experimental activities are described

    Second Quarterly Report of the PHIN Collaboration

    Get PDF

    Measurements and calibration of the stripline BPM for the ELI-NP facility with the stretched wire method

    Get PDF
    A methodology has been developed to perform electrical characterization of the stripline BPMs for the future Gamma Beam System of ELI Nuclear Physics facility in Romania. Several prototype units are extensively benchmarked and the results are presented in this paper. The BPM sensitivity function is determined using a uniquely designed motorized test bench with a stretched wire to measure the BPM response map. Here, the BPM feedthroughs are connected to Libera Brilliance electronics and the wire is fed by continuous wave signal, while the two software-controlled motors provide horizontal and vertical motion of the BPM around the wire. The electrical offset is obtained using S-parameter measurements with a Network Analyzer (via the “Lambertson” method) and is referenced to the mechanical offse

    Nanosized patterns as reference structures for macroscopic transport properties and vortex phases in YBCO films

    Full text link
    This paper studies the striking correlation between nanosized structural patterns in YBCO films and macroscopic transport current. A nanosized network of parallel Josephson junctions laced by insulating dislocations is almost mimicking the grain boundary structural network. It contributes to the macroscopic properties and accounts for the strong intergranular pinning across the film in the intermediate temperature range. The correlation between the two networks enables to find out an outstanding scaling law in the (Jc,B) plane and to determine meaningful parameters concerning the matching between the vortex lattice and the intergranular defect lattice. Two asymptotic behaviors of the pinning force below the flux flow regime are checked: the corresponding vortex phases are clearly individuated.Comment: 4 pages, 4 figure

    Effect of proton irradiation on the normal state low-energy excitations of Ba(Fe1x_{1-x}Rhx_x)2_2As2_2 superconductors

    Get PDF
    We present a \asnmr Nuclear Magnetic Resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x=x= 0.068) and overdoped (x=x= 0.107) Ba(Fe1x_{1-x}Rhx_x)2_2As2_2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagnetic correlations coexisting with superconductivity at the nanoscale. 1/T2_2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π)0,\pi) and (π\pi,0) nematic ground states.Comment: 9 pages, 9 figure

    A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam

    Full text link
    The paper reports on a high precision equipment designed to modify over 3-dimensions (3D) by means of high-energy gold ions the local properties of thin and thick films. A target-moving system aimed at creating patterns across the volume is driven by an x-y writing protocol that allows one to modify beam sensitive samples over micrometer-size regions of whatever shape. The apparatus has a mechanical resolution of 15 nm. The issue of the local fluence measurement has been particularly addressed. The setup has been checked by means of different geometries patterned on beam sensitive sheets as well as on superconducting materials. In the last case the 3D modification consists of amorphous nanostructures. The nanostructures create zones with different dissipative properties with respect to the virgin regions. The main analysis method consists of magneto-optical imaging that provides local information on the electrodynamics of the modified zones. Features typical of non-linear current flow hint at which pattern geometry is more functional to applications in the framework of nanostructures across superconducting films.Comment: 7 page

    Laser temporal pulse shaping based on the DAZZLER

    Get PDF
    corecore